Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export
نویسندگان
چکیده
BACKGROUND Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from metabolic engineered Saccharomyces cerevisiae cells expressing a heterologous lactate dehydrogenase (LDH) gene. The LDH gene expression in a budding yeast cell introduces a novel and alternative pathway for the NAD+ regeneration, allowing a direct reduction of the intracellular pyruvate to lactate, leading to a simultaneous accumulation of lactate and ethanol. RESULTS Four different S. cerevisiae strains were transformed with six different wild type and one mutagenised LDH genes, in combination or not with the over-expression of a lactate transporter. The resulting yield values (grams of lactate produced per grams of glucose consumed) varied from as low as 0,0008 to as high as 0.52 g g-1. In this respect, and to the best of our knowledge, higher redirections of the glycolysis flux have never been obtained before without any disruption and/or limitation of the competing biochemical pathways. CONCLUSION In the present work it is shown that the redirection of the pathway towards the lactate production can be strongly modulated by the genetic background of the host cell, by the source of the heterologous Ldh enzyme, by improving its biochemical properties as well as by modulating the export of lactate in the culture media.
منابع مشابه
Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli
BACKGROUND Due to its abundance and low-price, glycerol has become an attractive carbon source for the industrial production of value-added fuels and chemicals. This work reports the engineering of E. coli for the efficient conversion of glycerol into L-lactic acid (L-lactate). RESULTS Escherichia coli strains have previously been metabolically engineered for the microaerobic production of D-...
متن کاملThe levels of Serum Alkaline Phosphatase and Lactate Dehydrogenase in Hodgkin Lymphoma
Background: Hodgkin’s disease (HD) is a neoplastic disease originating in lymphoid tissue, which spreads to lymphoid structures and ultimately nonlymphoid tissues. Lactate Dehydrogenase and Alkaline Phosphatase are increased in blood following membrane cell damage. The aim of this study was to compare Lactate Dehydrogenase and Alkaline Phosphatase levels in children in different stages of Hodg...
متن کاملEfficient fermentative production of polymer-grade D-lactate by an engineered alkaliphilic Bacillus sp. strain under non-sterile conditions.
BACKGROUND Polylactic acid (PLA) is one important chemical building block that is well known as a biodegradable and a biocompatible plastic. The traditional lactate fermentation processes need CaCO3 as neutralizer to maintain the desired pH, which results in an amount of insoluble CaSO4 waste during the purification process. To overcome such environmental issue, alkaliphilic organisms have the ...
متن کاملL-malate production by metabolically engineered Escherichia coli.
Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirec...
متن کاملEffects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats
Background & Objective: The silver nanoparticles are important in many applications of nanoparticles on human health . The toxicity of silver nanoparticles are not well documented yet. The aim of this study was to investigate the effect of silver nanoparticles on lactate dehydrogenase activity and histological changes in heart tissue. Materials &Methods: In this study, 40 adult male wistar ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbial Cell Factories
دوره 5 شماره
صفحات -
تاریخ انتشار 2006